Choosing Azure SQL Purchase Model and Service Tier

When we are beginning to think of migrating our on-premises databases to Azure SQL, we have to decide on a proper purchase model, a service tier, and a performance level. Before starting the Azure SQL migration process, we have to find logical and provable answers to the following questions:

  • Which purchase model is suitable for my apps and business requirements?
  • How much budget do I need?
  • Which performance level meets my requirements?
  • Can I achieve the acceptable performance of my apps?

Read More

Azure SQL Geo-Replication and Failover Groups

Azure SQL offers different types of business continuity solutions. One of these solutions is Geo-Replication that provides an asynchronous database copy. You can store this copy in the same or different data center locations (regions).  There can be four readable database copies. In the documentation of Microsoft notes, the recovery point objective (RPO is the maximum acceptable amount of data loss measured in time) is less than 5 seconds.  If we want to automate and make (users will not affect) failover mechanism transparent, we have to create the auto-failover group.

Read More

Getting Started with SQL Server 2017 on Linux in the Azure portal

SQL Server 2017 now is considered as a hybrid database enterprise solution as it expands its market and is ported to other operating system platforms. It also includes mainstream support for Linux machines. The Cloud makes the life of administrator much easier, now it’s no longer daunting task to configure the SQL Server instance. The easiest way to explore SQL Server on Linux is to provision a virtual machine through Microsoft Azure portal – portal.azure.com. The Linux azure virtual machine will come pre-configured with Linux and SQL Server 2017.

Read More

Monitoring Azure SQL Database with Azure SQL Analytics

The most important and challenging responsibility of a database administrator is monitoring performance metrics. Because monitoring performance and troubleshooting performance issues are considered to be difficult. For this reason, we need diagnostic and monitoring tools to measure performance counters and metrics. For Azure SQL there is a tool which is named SQL Analytics. With this tool, we can measure and monitor Azure SQL databases and elastic pools. At the same time, we can create alerts for notifications. SQL Analytics offers performance metrics in graphical form. In this article, we will learn how to enable Azure SQL Analytics. Read More

Azure SQL Database Automatic Tuning

Microsoft has recently announced an incredible new feature – automatic tuning in Azure SQL Database. To be honest, I am thoroughly impressed with this feature because Microsoft engineers have sophisticatedly used artificial intelligence in SQL Azure performance tuning. The aim is to monitor Azure SQL database and send these observations to the built-in intelligence service that generates some recommendations. They can be applied at offpeak times. This feature has also simplified the work of database administrators; they don’t have to worry about SQL Azure database performance now.

Read More

Struggling with Data Export from Microsoft Dynamics 365 CRM to External Portals

Though Microsoft Dynamics 365 does not offer any built-in feature to export the CRM data to external portals so far, there is a simple way to reach there. If we create a web API as an intermediate service using Azure Cloud Services, it can easily export the data to external portals via FTP.

The process of configuring the Cloud Service and Storage in order to export CRM data to an external portal is described below.

Read More

Creating Simple Linear Regression in Azure Machine Learning

In today’s world, it is not enough to simply analyze data, create reports or develop business intelligence projects. To discover the power of data, we have to modify data on machine learning models and to predict future.

In this article, we will discuss one of the simplest methods, a linear regression, that we are going to modify statically in Azure Machine Learning.

Read More

Upload Documents to Azure Data Lake and Export Data using SSIS

 Introduction

Azure is growing every day. Microsoft created Azure, which is a Cloud Computing service released on 2010.

According to Microsoft, 80% of the fortune 500 companies are using Azure. Also, 40% of the Azure Revenue comes from Startups and independent software vendors. 33% of the Azure Virtual Machines are using Linux. Microsoft expects to earn $20 billion in 2018.

That is why companies are migrating part of the data to Azure and sometimes all the data.

Azure Data Lake is a special storage to analyze Big Data in parallel in Azure. It is optimized for analytics. You can store Social network data, emails, documents, sensor information, geographical information and more.

Read More